Skip to content

A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

License

Notifications You must be signed in to change notification settings

atomicoo/FCH-TTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b3854a1 · Mar 25, 2023

History

38 Commits
Apr 22, 2021
Apr 10, 2021
Apr 7, 2021
Apr 20, 2021
Apr 1, 2021
Apr 20, 2021
Apr 2, 2021
Apr 10, 2021
Apr 22, 2021
Apr 8, 2021
Apr 8, 2021
Apr 20, 2021
Apr 1, 2021
Mar 25, 2023
Mar 25, 2023
Apr 20, 2021
Apr 20, 2021
Apr 20, 2021
Apr 1, 2021
Apr 20, 2021
Apr 20, 2021
Apr 20, 2021
Apr 20, 2021

Repository files navigation

简体中文 | English

并行语音合成

[TOC]

新进展

目录结构

.
|--- config/      # 配置文件
     |--- default.yaml
     |--- ...
|--- datasets/    # 数据处理
|--- encoder/     # 声纹编码器
     |--- voice_encoder.py
     |--- ...
|--- helpers/     # 一些辅助类
     |--- trainer.py
     |--- synthesizer.py
     |--- ...
|--- logdir/      # 训练过程保存目录
|--- losses/      # 一些损失函数
|--- models/      # 合成模型
     |--- layers.py
     |--- duration.py
     |--- parallel.py
|--- pretrained/  # 预训练模型(LJSpeech 数据集)
|--- samples/     # 合成样例
|--- utils/       # 一些通用方法
|--- vocoder/     # 声码器
     |--- melgan.py
     |--- ...
|--- wandb/       # Wandb 保存目录
|--- extract-duration.py
|--- extract-embedding.py
|--- LICENSE
|--- prepare-dataset.py  # 准备脚本
|--- README.md
|--- README_en.md
|--- requirements.txt    # 依赖文件
|--- synthesize.py       # 合成脚本
|--- train-duration.py   # 训练脚本
|--- train-parallel.py

合成样例

部分合成样例见这里

预训练

部分预训练模型见这里

快速开始

步骤(1):克隆仓库

$ git clone https://github.com/atomicoo/ParallelTTS.git

步骤(2):安装依赖

$ conda create -n ParallelTTS python=3.7.9
$ conda activate ParallelTTS
$ pip install -r requirements.txt

步骤(3):合成语音

$ python synthesize.py \
  --checkpoint ./pretrained/ljspeech-parallel-epoch0100.pth \
  --melgan_checkpoint ./pretrained/ljspeech-melgan-epoch3200.pth \
  --input_texts ./samples/english/synthesize.txt \
  --outputs_dir ./outputs/

如果要合成其他语种的语音,需要通过 --config 指定相应的配置文件。

如何训练

步骤(1):准备数据

$ python prepare-dataset.py

通过 --config 可以指定配置文件,默认的 default.yaml 针对 LJSpeech 数据集。

步骤(2):训练对齐模型

$ python train-duration.py

步骤(3):提取持续时间

$ python extract-duration.py

通过 --ground_truth 可以指定是否利用对齐模型生成 Ground-Truth 声谱图。

步骤(4):训练合成模型

$ python train-parallel.py

通过 --ground_truth 可以指定是否使用 Ground-Truth 声谱图进行模型训练。

训练日志

如果使用 TensorBoardX,则运行如下命令:

$ tensorboard --logdir logdir/[DIR]/

强烈推荐使用 Wandb(Weights & Biases),只需在上述训练命令中增加 --enable_wandb 选项。

数据集

  • LJSpeech:英语,女性,22050 Hz,约 24 小时
  • LibriSpeech:英语,多说话人(仅使用 train-clean-100 部分),16000 Hz,总计约 1000 小时
  • JSUT:日语,女性,48000 Hz,约 10 小时
  • BiaoBei:普通话,女性,48000 Hz,约 12 小时
  • KSS:韩语,女性,44100 Hz,约 12 小时
  • RuLS:俄语,多说话人(仅使用单一说话人音频),16000 Hz,总计约 98 小时
  • TWLSpeech(非公开,质量较差):藏语,女性(多说话人,音色相近),16000 Hz,约 23 小时

质量评估

TODO:待补充

速度指标

训练速度:对于 LJSpeech 数据集,设置批次尺寸为 64,可以在单张 8GB 显存的 GTX 1080 显卡上进行训练,训练 ~8h(~300 epochs)后即可合成质量较高的语音。

合成速度:以下测试在 CPU @ Intel Core i7-8550U / GPU @ NVIDIA GeForce MX150 下进行,每段合成音频在 8 秒左右(约 20 词)

批次尺寸 Spec
(GPU)
Audio
(GPU)
Spec
(CPU)
Audio
(CPU)
1 0.042 0.218 0.100 2.004
2 0.046 0.453 0.209 3.922
4 0.053 0.863 0.407 7.897
8 0.062 2.386 0.878 14.599

注意,没有进行多次测试取平均值,结果仅供参考。

一些问题

  • wavegan 分支中,vocoder 代码取自 ParallelWaveGAN,由于声学特征提取方式不兼容,需要进行转化,具体转化代码见这里
  • 普通话模型的文本输入选择拼音序列,因为 BiaoBei 的原始拼音序列不包含标点、以及对齐模型训练不完全,所以合成语音的节奏会有点问题。
  • 韩语模型没有专门训练对应的声码器,而是直接使用 LJSpeech(同为 22050 Hz)的声码器,可能稍微影响合成语音的质量。

参考资料

TODO

  • 合成语音质量评估(MOS)
  • 更多不同语种的测试
  • 语音风格迁移(音色)

欢迎交流

About

A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

Topics

Resources

License

Stars

Watchers

Forks

Languages