-
Notifications
You must be signed in to change notification settings - Fork 7
dirichlet boundary conditions
Ondrej Meca edited this page Mar 3, 2021
·
1 revision
simple wall 1 [ecf]
This benchmark shows how to solve simple linear steady-state heat transfer problems with one material model and a simple Dirichlet boundary condition.
- 2D square
$a = 1\ [m]$ - constant thickness
$1\ [m]$ set to all elements - material – aluminum alloy, isotropic material model, thermal conductivity
$\lambda= 154\ [W\cdot m^{-1}\cdot K^{-1}]$ - uniform initial temperature
$293.15\ [K]$ - constant temperature - set to region LEFT,
$temperature = 320\ [K]$ - constant temperature - set to region RIGHT,
$temperature = 380\ [K]$
HEAT_TRANSFER_2D {
LOAD_STEPS 1;
MATERIALS {
MAT_01 {
THERMAL_CONDUCTIVITY {
MODEL ISOTROPIC;
KXX 154;
}
}
}
MATERIAL_SET {
ALL_ELEMENTS MAT_01;
}
INITIAL_TEMPERATURE {
ALL_ELEMENTS 293.15;
}
THICKNESS {
ALL_ELEMENTS 1;
}
LOAD_STEPS_SETTINGS {
1 {
DURATION_TIME 1;
TYPE STEADY_STATE;
MODE LINEAR;
SOLVER FETI;
FETI {
METHOD TOTAL_FETI;
PRECONDITIONER DIRICHLET;
ITERATIVE_SOLVER PCG;
}
TEMPERATURE {
LEFT 320;
RIGHT 380;
}
}
}
}
$ mpirun -n 1 espreso -c squareSimpleWall_temperature_01.ecf