Skip to content

dirichlet boundary conditions

Ondrej Meca edited this page Mar 3, 2021 · 1 revision

simple wall 1 [ecf]

This benchmark shows how to solve simple linear steady-state heat transfer problems with one material model and a simple Dirichlet boundary condition.

Model description

  • 2D square $a = 1\ [m]$
  • constant thickness $1\ [m]$ set to all elements
  • material – aluminum alloy, isotropic material model, thermal conductivity $\lambda= 154\ [W\cdot m^{-1}\cdot K^{-1}]$
  • uniform initial temperature $293.15\ [K]$
  • constant temperature - set to region LEFT, $temperature = 320\ [K]$
  • constant temperature - set to region RIGHT, $temperature = 380\ [K]$

simple wall 1

Configuration file

HEAT_TRANSFER_2D {
  LOAD_STEPS         1;

   MATERIALS {
     MAT_01 {
       THERMAL_CONDUCTIVITY {
         MODEL   ISOTROPIC;
         KXX           154;
       }
     }
   }

   MATERIAL_SET {
     ALL_ELEMENTS   MAT_01;
   }

   INITIAL_TEMPERATURE {
     ALL_ELEMENTS   293.15;
   }

   THICKNESS {
     ALL_ELEMENTS     1;
   }

   LOAD_STEPS_SETTINGS {
     1 {
       DURATION_TIME     1;
       TYPE   STEADY_STATE;
       MODE         LINEAR;
       SOLVER         FETI;

       FETI {
         METHOD          TOTAL_FETI;
         PRECONDITIONER   DIRICHLET;
         ITERATIVE_SOLVER       PCG;
       }

       TEMPERATURE {
         LEFT         320;
         RIGHT        380;
       }
     }
   }
}

Run the solver

$ mpirun -n 1 espreso -c squareSimpleWall_temperature_01.ecf

Results

Clone this wiki locally