You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: doc/overviews/index.md
+2
Original file line number
Diff line number
Diff line change
@@ -6,6 +6,8 @@ The Python visualization landscape can seem daunting at first. These overviews a
6
6
7
7
<em>Adaptation of <ahref="https://www.youtube.com/watch?v=FytuB8nFHPQ">Jake VanderPlas' graphic</a> about the Python visualization landscape, by Nicolas P. Rougier</em>
8
8
9
+
-[The Essential Guide to R and Python Libraries for Data Visualization](https://towardsdatascience.com/the-essential-guide-to-r-and-python-libraries-for-data-visualization-33be8511c976), 16 Dec 2024: Sarah Lea. Comparing Matplotlib, Seaborn, Plotly, Pandas .plot(), Bokeh, Altair, HoloViews, and Folium.
10
+
9
11
-[A Survey of Python Frameworks](https://ploomber.io/blog/survey-python-frameworks/), 25 Sep 2024: Ellie Ko. Comparing Streamlit, Shiny for Python, Panel, Flask, Chainlit, Dash, Voila, and Gradio.
10
12
11
13
-[The Power of Pandas Plots: Backends](https://towardsdatascience.com/the-power-of-pandas-plots-backends-6a08d52071d2), 29 Aug 2024: Pierre-Etienne Toulemonde. Comparing matplotlib, plotly, and hvPlot for plotting with Pandas.
0 commit comments