|
17 | 17 |
|
18 | 18 |
|
19 | 19 | def parse_args():
|
20 |
| - parser = argparse.ArgumentParser() |
21 |
| - parser.add_argument('--cuda', action='store_true', default=False, |
22 |
| - help='Use NVIDIA GPU acceleration') |
23 |
| - parser.add_argument('--img', type=str, default='', |
24 |
| - help='Input image path') |
25 |
| - parser.add_argument('--out_dir', type=str, default='./result/cam/', |
26 |
| - help='Result directory path') |
27 |
| - args = parser.parse_args() |
28 |
| - args.cuda = args.cuda and torch.cuda.is_available() |
29 |
| - if args.cuda: |
30 |
| - print("Using GPU for acceleration") |
31 |
| - else: |
32 |
| - print("Using CPU for computation") |
33 |
| - if args.img: |
34 |
| - print('Input image: {}'.format(args.img)) |
35 |
| - else: |
36 |
| - print('Input image: raccoon face (scipy.misc.face())') |
37 |
| - print('Output directory: {}'.format(args.out_dir)) |
38 |
| - print() |
39 |
| - return args |
| 20 | + parser = argparse.ArgumentParser() |
| 21 | + parser.add_argument('--cuda', action='store_true', default=False, |
| 22 | + help='Use NVIDIA GPU acceleration') |
| 23 | + parser.add_argument('--img', type=str, default='', |
| 24 | + help='Input image path') |
| 25 | + parser.add_argument('--out_dir', type=str, default='./result/cam/', |
| 26 | + help='Result directory path') |
| 27 | + args = parser.parse_args() |
| 28 | + args.cuda = args.cuda and torch.cuda.is_available() |
| 29 | + if args.cuda: |
| 30 | + print("Using GPU for acceleration") |
| 31 | + else: |
| 32 | + print("Using CPU for computation") |
| 33 | + if args.img: |
| 34 | + print('Input image: {}'.format(args.img)) |
| 35 | + else: |
| 36 | + print('Input image: raccoon face (scipy.misc.face())') |
| 37 | + print('Output directory: {}'.format(args.out_dir)) |
| 38 | + print() |
| 39 | + return args |
40 | 40 |
|
41 | 41 |
|
42 | 42 | def main():
|
43 |
| - args = parse_args() |
44 |
| - |
45 |
| - if not os.path.exists(args.out_dir): |
46 |
| - os.makedirs(args.out_dir) |
47 |
| - |
48 |
| - target_layer_names = ['35'] |
49 |
| - target_index = None |
50 |
| - |
51 |
| - # Prepare input image |
52 |
| - if args.img: |
53 |
| - img = cv2.imread(args.img, 1) |
54 |
| - else: |
55 |
| - img = misc.face() |
56 |
| - img = np.float32(cv2.resize(img, (224, 224))) / 255 |
57 |
| - preprocessed_img = preprocess_image(img, args.cuda) |
58 |
| - |
59 |
| - # Prediction |
60 |
| - output = vgg19(pretrained=True)(preprocessed_img) |
61 |
| - pred_index = np.argmax(output.data.cpu().numpy()) |
62 |
| - print('Prediction: {}'.format(IMAGENET_LABELS[pred_index])) |
63 |
| - |
64 |
| - # Prepare grad cam |
65 |
| - grad_cam = GradCam( |
66 |
| - pretrained_model=vgg19(pretrained=True), |
67 |
| - target_layer_names=target_layer_names, |
68 |
| - cuda=args.cuda) |
69 |
| - |
70 |
| - # Compute grad cam |
71 |
| - mask = grad_cam(preprocessed_img, target_index) |
72 |
| - |
73 |
| - save_cam_image(img, mask, os.path.join(args.out_dir, 'grad_cam.jpg')) |
74 |
| - print('Saved Grad-CAM image') |
75 |
| - |
76 |
| - # Reload preprocessed image |
77 |
| - preprocessed_img = preprocess_image(img) |
78 |
| - |
79 |
| - # Compute guided backpropagation |
80 |
| - guided_backprop = GuidedBackpropGrad( |
81 |
| - pretrained_model=vgg19(pretrained=True), cuda=args.cuda) |
82 |
| - guided_backprop_saliency = guided_backprop(preprocessed_img, index=target_index) |
83 |
| - |
84 |
| - cam_mask = np.zeros(guided_backprop_saliency.shape) |
85 |
| - for i in range(guided_backprop_saliency.shape[0]): |
86 |
| - cam_mask[i, :, :] = mask |
87 |
| - |
88 |
| - cam_guided_backprop = np.multiply(cam_mask, guided_backprop_saliency) |
89 |
| - save_as_gray_image( |
90 |
| - cam_guided_backprop, |
91 |
| - os.path.join(args.out_dir, 'guided_grad_cam.jpg')) |
92 |
| - print('Saved Guided Grad-CAM image') |
| 43 | + args = parse_args() |
| 44 | + |
| 45 | + if not os.path.exists(args.out_dir): |
| 46 | + os.makedirs(args.out_dir) |
| 47 | + |
| 48 | + target_layer_names = ['35'] |
| 49 | + target_index = None |
| 50 | + |
| 51 | + # Prepare input image |
| 52 | + if args.img: |
| 53 | + img = cv2.imread(args.img, 1) |
| 54 | + else: |
| 55 | + img = misc.face() |
| 56 | + img = np.float32(cv2.resize(img, (224, 224))) / 255 |
| 57 | + preprocessed_img = preprocess_image(img, args.cuda) |
| 58 | + |
| 59 | + model = vgg19(pretrained=True) |
| 60 | + if args.cuda: |
| 61 | + model.cuda() |
| 62 | + |
| 63 | + # Prediction |
| 64 | + output = model(preprocessed_img) |
| 65 | + pred_index = np.argmax(output.data.cpu().numpy()) |
| 66 | + print('Prediction: {}'.format(IMAGENET_LABELS[pred_index])) |
| 67 | + |
| 68 | + # Prepare grad cam |
| 69 | + grad_cam = GradCam( |
| 70 | + pretrained_model=model, |
| 71 | + target_layer_names=target_layer_names, |
| 72 | + cuda=args.cuda) |
| 73 | + |
| 74 | + # Compute grad cam |
| 75 | + mask = grad_cam(preprocessed_img, target_index) |
| 76 | + |
| 77 | + save_cam_image(img, mask, os.path.join(args.out_dir, 'grad_cam.jpg')) |
| 78 | + print('Saved Grad-CAM image') |
| 79 | + |
| 80 | + # Reload preprocessed image |
| 81 | + preprocessed_img = preprocess_image(img) |
| 82 | + |
| 83 | + # Compute guided backpropagation |
| 84 | + guided_backprop = GuidedBackpropGrad( |
| 85 | + pretrained_model=model, cuda=args.cuda) |
| 86 | + guided_backprop_saliency = guided_backprop(preprocessed_img, index=target_index) |
| 87 | + |
| 88 | + cam_mask = np.zeros(guided_backprop_saliency.shape) |
| 89 | + for i in range(guided_backprop_saliency.shape[0]): |
| 90 | + cam_mask[i, :, :] = mask |
| 91 | + |
| 92 | + cam_guided_backprop = np.multiply(cam_mask, guided_backprop_saliency) |
| 93 | + save_as_gray_image( |
| 94 | + cam_guided_backprop, |
| 95 | + os.path.join(args.out_dir, 'guided_grad_cam.jpg')) |
| 96 | + print('Saved Guided Grad-CAM image') |
93 | 97 |
|
94 | 98 |
|
95 | 99 | if __name__ == '__main__':
|
|
0 commit comments