AssertionError: The number of subfolders (102) doesn't match the number of specified classes (1000). Please check the data folder. #1797
Unanswered
yangzhenyu6
asked this question in
Q&A
Replies: 4 comments
-
Beta Was this translation helpful? Give feedback.
0 replies
-
解决了吗,怎么改? |
Beta Was this translation helpful? Give feedback.
0 replies
-
Beta Was this translation helpful? Give feedback.
0 replies
-
thanks |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I hope to use my own dataset to train resnet18_ 8xb32_ However, my dataset only has 102 classes. How can I adjust my parameters so that the model can be trained
Here are my parameter configurations:
auto_scale_lr = dict(base_batch_size=256)
data_preprocessor = dict(
mean=[
123.675,
116.28,
103.53,
],
num_classes=102,
std=[
58.395,
57.12,
57.375,
],
to_rgb=True)
dataset_type = 'ImageNet'
default_hooks = dict(
checkpoint=dict(interval=50, type='CheckpointHook'),
logger=dict(interval=100, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(enable=False, type='VisualizationHook'))
default_scope = 'mmpretrain'
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
launcher = 'none'
load_from = None
log_level = 'INFO'
model = dict(
backbone=dict(
depth=18,
num_stages=4,
out_indices=(3, ),
style='pytorch',
type='ResNet'),
head=dict(
in_channels=512,
loss=dict(loss_weight=1.0, type='CrossEntropyLoss'),
num_classes=102,
topk=(
1,
5,
),
type='LinearClsHead'),
neck=dict(type='GlobalAveragePooling'),
type='ImageClassifier')
optim_wrapper = dict(
optimizer=dict(lr=0.1, momentum=0.9, type='SGD', weight_decay=0.0001))
param_scheduler = dict(
by_epoch=True, gamma=0.1, milestones=[
30,
60,
90,
], type='MultiStepLR')
randomness = dict(deterministic=False, seed=None)
resume = False
test_cfg = dict()
test_dataloader = dict(
batch_size=32,
collate_fn=dict(type='default_collate'),
dataset=dict(
data_root=r'D:\PycharmProjects\pythonProject_test\mmpretrain-main\mmpretrain\data\flower_data\valid',
pipeline=[
dict(type='LoadImageFromFile'),
dict(edge='short', scale=256, type='ResizeEdge'),
dict(crop_size=224, type='CenterCrop'),
dict(type='PackInputs'),
],
split='val',
type='ImageNet'),
num_workers=5,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
topk=(
1,
5,
), type='Accuracy')
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(edge='short', scale=256, type='ResizeEdge'),
dict(crop_size=224, type='CenterCrop'),
dict(type='PackInputs'),
]
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
train_dataloader = dict(
batch_size=32,
collate_fn=dict(type='default_collate'),
dataset=dict(
data_root=r'D:\PycharmProjects\pythonProject_test\mmpretrain-main\mmpretrain\data\flower_data',
pipeline=[
dict(type='LoadImageFromFile'),
dict(scale=224, type='RandomResizedCrop'),
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
dict(type='PackInputs'),
],
split='train',
type='ImageNet'),
num_workers=5,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=True, type='DefaultSampler'))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(scale=224, type='RandomResizedCrop'),
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
dict(type='PackInputs'),
]
val_cfg = dict()
val_dataloader = dict(
batch_size=32,
collate_fn=dict(type='default_collate'),
dataset=dict(
data_root=r'D:\PycharmProjects\pythonProject_test\mmpretrain-main\mmpretrain\data\flower_data\valid',
pipeline=[
dict(type='LoadImageFromFile'),
dict(edge='short', scale=256, type='ResizeEdge'),
dict(crop_size=224, type='CenterCrop'),
dict(type='PackInputs'),
],
split='val',
type='ImageNet'),
num_workers=5,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
topk=(
1,
5,
), type='Accuracy')
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
type='UniversalVisualizer', vis_backends=[
dict(type='LocalVisBackend'),
])
work_dir = './work_dirs\resnet18_8xb32_in1k'
Beta Was this translation helpful? Give feedback.
All reactions