Description
Prerequisite
- I have searched Issues and Discussions but cannot get the expected help.
- The bug has not been fixed in the latest version (0.x) or latest version (1.x).
Task
I have modified the scripts/configs, or I'm working on my own tasks/models/datasets.
Branch
main branch https://github.com/open-mmlab/mmocr
Environment
fatal: not a git repository (or any parent up to mount point /DATA/disk1)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
sys.platform: linux
Python: 3.8.10 (default, Mar 15 2022, 12:22:08) [GCC 9.4.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-PCIE-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.6, V11.6.124
GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.12.0+cu116
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.6
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.3.2 (built against CUDA 11.5)
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.13.0+cu116
OpenCV: 4.6.0
MMCV: 1.6.2
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.6
MMOCR: 0.6.1+
pytorch 1.12-cu116
Reproduces the problem - code sample
python train.py
Reproduces the problem - command or script
python train.py
Reproduces the problem - error message
Evaluating /instances_test.json with 1535 images now
2022-10-20 16:29:56,870 - mmocr - INFO - Evaluating hmean-iou...
2022-10-20 16:37:27,989 - mmocr - INFO - thr 0.30, recall: 0.408, precision: 0.564, hmean: 0.473
--***
it takes almost 10 minitues for one evaluation. and I notice that the GPU utilities are not changed during the evalutaion.(keep the same as trainging)
Additional information
No response