Skip to content

Commit 6bbdadf

Browse files
authored
[HOTFIX] Update cuda-python dependency to 11.7.1 (rapidsai#2848)
This should resolve a segfault we are seeing with `cuda-python=11.7.0` (rapidsai/cudf#11941). Authors: - Ashwin Srinath (https://github.com/shwina) - Bradley Dice (https://github.com/bdice) - Ray Douglass (https://github.com/raydouglass) Approvers: - Bradley Dice (https://github.com/bdice) - Brad Rees (https://github.com/BradReesWork) - Ray Douglass (https://github.com/raydouglass) - GALI PREM SAGAR (https://github.com/galipremsagar)
1 parent 3eaa224 commit 6bbdadf

File tree

9 files changed

+24
-29
lines changed

9 files changed

+24
-29
lines changed

README.md

Lines changed: 10 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
[![Build Status](https://gpuci.gpuopenanalytics.com/job/rapidsai/job/gpuci/job/cugraph/job/branches/job/cugraph-branch-pipeline/badge/icon)](https://gpuci.gpuopenanalytics.com/job/rapidsai/job/gpuci/job/cugraph/job/branches/job/cugraph-branch-pipeline/)
44

5-
The [RAPIDS](https://rapids.ai) cuGraph library is a collection of GPU accelerated graph algorithms that process data found in [GPU DataFrames](https://github.com/rapidsai/cudf). The vision of cuGraph is _to make graph analysis ubiquitous to the point that users just think in terms of analysis and not technologies or frameworks_. To realize that vision, cuGraph operates, at the Python layer, on GPU DataFrames, thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF. Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS.
5+
The [RAPIDS](https://rapids.ai) cuGraph library is a collection of GPU accelerated graph algorithms that process data found in [GPU DataFrames](https://github.com/rapidsai/cudf). The vision of cuGraph is _to make graph analysis ubiquitous to the point that users just think in terms of analysis and not technologies or frameworks_. To realize that vision, cuGraph operates, at the Python layer, on GPU DataFrames, thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF. Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS.
66

77
While the high-level cugraph python API provides an easy-to-use and familiar interface for data scientists that's consistent with other RAPIDS libraries in their workflow, some use cases require access to lower-level graph theory concepts. For these users, we provide an additional Python API called pylibcugraph, intended for applications that require a tighter integration with cuGraph at the Python layer with fewer dependencies. Users familiar with C/C++/CUDA and graph structures can access libcugraph and libcugraph_c for low level integration outside of python.
88

@@ -43,13 +43,13 @@ There are 3 ways to get cuGraph :
4343
# cuGraph News
4444

4545
### Scaling to 1 Trillion Edges
46-
At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph.
46+
At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph.
4747

4848
<div align="left"><img src="img/Scaling.png" width="500px" style="background-color: white;"/>&nbsp;</br>cuGraph Scaling</div>
4949
</br></br>
5050

5151
### cuGraph Software Stack
52-
cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers.
52+
cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers.
5353

5454
<div align="left"><img src="img/cugraph-stack.png" width="500px" style="background-color: white;"/>&nbsp;</br>cuGraph Software Stack</div>
5555
</br></br>
@@ -143,7 +143,7 @@ _Italic_ algorithms are planned for future releases.
143143
| Other | | | |
144144
| | Renumbering | <mark>Multi-GPU</mark> | multiple columns, any data type |
145145
| | Symmetrize | <mark>Multi-GPU</mark> | |
146-
| | Path Extraction | | Extract paths from BFS/SSP results in parallel |
146+
| | Path Extraction | | Extract paths from BFS/SSP results in parallel |
147147
| Data Generator | | | |
148148
| | RMAT | <mark>Multi-GPU</mark> | |
149149
| | _Barabasi-Albert_ | --- | |
@@ -154,7 +154,7 @@ _Italic_ algorithms are planned for future releases.
154154

155155
## cuGraph Notice
156156

157-
Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0.
157+
Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0.
158158

159159
Additionally, when using the auto-renumbering feature, vertices are automatically un-renumbered in results.
160160

@@ -183,20 +183,15 @@ It is easy to install cuGraph using conda. You can get a minimal conda installat
183183
Install and update cuGraph using the conda command:
184184

185185
```bash
186-
187-
188-
189-
190-
191-
# CUDA 11.4
192-
conda install -c nvidia -c rapidsai -c numba -c conda-forge cugraph cudatoolkit=11.4
193-
194186
# CUDA 11.5
195-
conda install -c nvidia -c rapidsai -c numba -c conda-forge cugraph cudatoolkit=11.5
187+
conda install -c rapidsai -c numba -c conda-forge -c nvidia cugraph cudatoolkit=11.5
196188

197-
For CUDA > 11.5, please use the 11.5 environment
189+
# CUDA 11.4
190+
conda install -c rapidsai -c numba -c conda-forge -c nvidia cugraph cudatoolkit=11.4
198191
```
199192

193+
For CUDA > 11.5, please use the 11.5 environment.
194+
200195
Note: This conda installation only applies to Linux and Python versions 3.8/3.9.
201196

202197

ci/benchmark/build.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ CUGRAPH_DEPS=(cudf rmm)
7171
LIBCUGRAPH_DEPS=(cudf rmm)
7272

7373
gpuci_logger "Install required packages"
74-
gpuci_mamba_retry install -c nvidia -c rapidsai -c rapidsai-nightly -c conda-forge \
74+
gpuci_mamba_retry install -c rapidsai -c rapidsai-nightly -c conda-forge -c nvidia \
7575
"cudf=${MINOR_VERSION}" \
7676
"rmm=${MINOR_VERSION}" \
7777
"cudatoolkit=$CUDA_REL" \

conda/environments/cugraph_dev_cuda11.2.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
name: cugraph_dev
22
channels:
33
- rapidsai
4-
- nvidia
54
- rapidsai-nightly
65
- conda-forge
6+
- nvidia
77
dependencies:
88
- c-compiler
99
- cxx-compiler
@@ -17,7 +17,7 @@ dependencies:
1717
- libraft-distance=22.10.*
1818
- raft-dask=22.10.*
1919
- pylibraft=22.10.*
20-
- cuda-python>=11.5,<11.7.1
20+
- cuda-python>=11.7.1,<12.0
2121
- dask==2022.9.2
2222
- distributed==2022.9.2
2323
- dask-cuda=22.10.*

conda/environments/cugraph_dev_cuda11.4.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
name: cugraph_dev
22
channels:
33
- rapidsai
4-
- nvidia
54
- rapidsai-nightly
65
- conda-forge
6+
- nvidia
77
dependencies:
88
- c-compiler
99
- cxx-compiler
@@ -17,7 +17,7 @@ dependencies:
1717
- libraft-distance=22.10.*
1818
- raft-dask=22.10.*
1919
- pylibraft=22.10.*
20-
- cuda-python>=11.5,<11.7.1
20+
- cuda-python>=11.7.1,<12.0
2121
- dask==2022.9.2
2222
- distributed==2022.9.2
2323
- dask-cuda=22.10.*

conda/environments/cugraph_dev_cuda11.5.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
name: cugraph_dev
22
channels:
33
- rapidsai
4-
- nvidia
54
- rapidsai-nightly
65
- conda-forge
6+
- nvidia
77
dependencies:
88
- c-compiler
99
- cxx-compiler
@@ -17,7 +17,7 @@ dependencies:
1717
- libraft-distance=22.10.*
1818
- raft-dask=22.10.*
1919
- pylibraft=22.10.*
20-
- cuda-python>=11.5,<11.7.1
20+
- cuda-python>=11.7.1,<12.0
2121
- dask==2022.9.2
2222
- distributed==2022.9.2
2323
- dask-cuda=22.10.*

conda/recipes/cugraph/meta.yaml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Copyright (c) 2018-2022, NVIDIA CORPORATION.
22

33
# Usage:
4-
# conda build -c nvidia -c rapidsai -c conda-forge .
4+
# conda build -c rapidsai -c conda-forge -c nvidia .
55
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
66
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
77
{% set cuda_version='.'.join(environ.get('CUDA', 'unknown').split('.')[:2]) %}
@@ -63,7 +63,7 @@ requirements:
6363
- ucx-py {{ ucx_py_version }}
6464
- ucx-proc=*=gpu
6565
- {{ pin_compatible('cudatoolkit', max_pin='x', min_pin='x') }}
66-
- cuda-python >=11.5,<11.7.1
66+
- cuda-python >=11.7.1,<12.0
6767

6868
tests: # [linux64]
6969
requirements: # [linux64]

conda/recipes/libcugraph/meta.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Copyright (c) 2018-2022, NVIDIA CORPORATION.
22

33
# Usage:
4-
# conda build -c nvidia -c rapidsai -c conda-forge .
4+
# conda build -c rapidsai -c conda-forge -c nvidia .
55
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
66
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
77
{% set cuda_version = '.'.join(environ.get('CUDA', '11.5').split('.')[:2]) %}

conda/recipes/pylibcugraph/meta.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Copyright (c) 2022, NVIDIA CORPORATION.
22

33
# Usage:
4-
# conda build -c nvidia -c rapidsai -c conda-forge .
4+
# conda build -c rapidsai -c conda-forge -c nvidia .
55
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
66
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
77
{% set cuda_version='.'.join(environ.get('CUDA', 'unknown').split('.')[:2]) %}

conda_build.sh

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,15 @@
11
#!/usr/bin/env bash
2-
# Copyright (c) 2021, NVIDIA CORPORATION
2+
# Copyright (c) 2021-2022, NVIDIA CORPORATION
33

44
set -xe
55

66
CUDA_REL=${CUDA_VERSION%.*}
77

88
conda install conda-build anaconda-client conda-verify -y
9-
conda build -c nvidia -c rapidsai -c rapidsai-nightly/label/cuda${CUDA_REL} -c conda-forge --python=${PYTHON} conda/recipes/cugraph
9+
conda build -c rapidsai -c rapidsai-nightly/label/cuda${CUDA_REL} -c conda-forge -c nvidia --python=${PYTHON} conda/recipes/cugraph
1010

1111
if [ "$UPLOAD_PACKAGE" == '1' ]; then
12-
export UPLOADFILE=`conda build -c nvidia -c rapidsai -c conda-forge --python=${PYTHON} conda/recipes/cugraph --output`
12+
export UPLOADFILE=`conda build -c rapidsai -c conda-forge -c nvidia --python=${PYTHON} conda/recipes/cugraph --output`
1313
SOURCE_BRANCH=main
1414

1515
test -e ${UPLOADFILE}

0 commit comments

Comments
 (0)