-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegmentTree.java
332 lines (278 loc) · 10.2 KB
/
SegmentTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/******************************************************************************
* Compilation: javac SegmentTree.java
* Execution: java SegmentTree
*
* A segment tree data structure.
*
******************************************************************************/
import java.util.Arrays;
/**
* The {@code SegmentTree} class is an structure for efficient search of cummulative data.
* It performs Range Minimum Query and Range Sum Query in O(log(n)) time.
* It can be easily customizable to support Range Max Query, Range Multiplication Query etc.
* <p>
* Also it has been develop with {@code LazyPropagation} for range updates, which means
* when you perform update operations over a range, the update process affects the least nodes as possible
* so that the bigger the range you want to update the less time it consumes to update it. Eventually those changes will be propagated
* to the children and the whole array will be up to date.
* <p>
* Example:
* <p>
* SegmentTreeHeap st = new SegmentTreeHeap(new Integer[]{1,3,4,2,1, -2, 4});
* st.update(0,3, 1)
* In the above case only the node that represents the range [0,3] will be updated (and not their children) so in this case
* the update task will be less than n*log(n)
*
* Memory usage: O(n)
*
* @author Ricardo Pacheco
*/
public class SegmentTree {
private Node[] heap;
private int[] array;
private int size;
/**
* Time-Complexity: O(n*log(n))
*
* @param array the Initialization array
*/
public SegmentTree(int[] array) {
this.array = Arrays.copyOf(array, array.length);
//The max size of this array is about 2 * 2 ^ log2(n) + 1
size = (int) (2 * Math.pow(2.0, Math.floor((Math.log((double) array.length) / Math.log(2.0)) + 1)));
heap = new Node[size];
build(1, 0, array.length);
}
public int size() {
return array.length;
}
//Initialize the Nodes of the Segment tree
private void build(int v, int from, int size) {
heap[v] = new Node();
heap[v].from = from;
heap[v].to = from + size - 1;
if (size == 1) {
heap[v].sum = array[from];
heap[v].min = array[from];
} else {
//Build childs
build(2 * v, from, size / 2);
build(2 * v + 1, from + size / 2, size - size / 2);
heap[v].sum = heap[2 * v].sum + heap[2 * v + 1].sum;
//min = min of the children
heap[v].min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
}
}
/**
* Range Sum Query
*
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @return sum
*/
public int rsq(int from, int to) {
return rsq(1, from, to);
}
private int rsq(int v, int from, int to) {
Node n = heap[v];
//If you did a range update that contained this node, you can infer the Sum without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
return (to - from + 1) * n.pendingVal;
}
if (contains(from, to, n.from, n.to)) {
return heap[v].sum;
}
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftSum = rsq(2 * v, from, to);
int rightSum = rsq(2 * v + 1, from, to);
return leftSum + rightSum;
}
return 0;
}
/**
* Range Min Query
*
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @return min
*/
public int rMinQ(int from, int to) {
return rMinQ(1, from, to);
}
private int rMinQ(int v, int from, int to) {
Node n = heap[v];
//If you did a range update that contained this node, you can infer the Min value without going down the tree
if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
return n.pendingVal;
}
if (contains(from, to, n.from, n.to)) {
return heap[v].min;
}
if (intersects(from, to, n.from, n.to)) {
propagate(v);
int leftMin = rMinQ(2 * v, from, to);
int rightMin = rMinQ(2 * v + 1, from, to);
return Math.min(leftMin, rightMin);
}
return Integer.MAX_VALUE;
}
/**
* Range Update Operation.
* With this operation you can update either one position or a range of positions with a given number.
* The update operations will update the less it can to update the whole range (Lazy Propagation).
* The values will be propagated lazily from top to bottom of the segment tree.
* This behavior is really useful for updates on portions of the array
* <p>
* Time-Complexity: O(log(n))
*
* @param from from index
* @param to to index
* @param value value
*/
public void update(int from, int to, int value) {
update(1, from, to, value);
}
private void update(int v, int from, int to, int value) {
//The Node of the heap tree represents a range of the array with bounds: [n.from, n.to]
Node n = heap[v];
/**
* If the updating-range contains the portion of the current Node We lazily update it.
* This means We do NOT update each position of the vector, but update only some temporal
* values into the Node; such values into the Node will be propagated down to its children only when they need to.
*/
if (contains(from, to, n.from, n.to)) {
change(n, value);
}
if (n.size() == 1) return;
if (intersects(from, to, n.from, n.to)) {
/**
* Before keeping going down to the tree We need to propagate the
* the values that have been temporally/lazily saved into this Node to its children
* So that when We visit them the values are properly updated
*/
propagate(v);
update(2 * v, from, to, value);
update(2 * v + 1, from, to, value);
n.sum = heap[2 * v].sum + heap[2 * v + 1].sum;
n.min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
}
}
//Propagate temporal values to children
private void propagate(int v) {
Node n = heap[v];
if (n.pendingVal != null) {
change(heap[2 * v], n.pendingVal);
change(heap[2 * v + 1], n.pendingVal);
n.pendingVal = null; //unset the pending propagation value
}
}
//Save the temporal values that will be propagated lazily
private void change(Node n, int value) {
n.pendingVal = value;
n.sum = n.size() * value;
n.min = value;
array[n.from] = value;
}
//Test if the range1 contains range2
private boolean contains(int from1, int to1, int from2, int to2) {
return from2 >= from1 && to2 <= to1;
}
//check inclusive intersection, test if range1[from1, to1] intersects range2[from2, to2]
private boolean intersects(int from1, int to1, int from2, int to2) {
return from1 <= from2 && to1 >= from2 // (.[..)..] or (.[...]..)
|| from1 >= from2 && from1 <= to2; // [.(..]..) or [..(..)..
}
//The Node class represents a partition range of the array.
static class Node {
int sum;
int min;
//Here We store the value that will be propagated lazily
Integer pendingVal = null;
int from;
int to;
int size() {
return to - from + 1;
}
}
/**
* Read the following commands:
* init n v Initializes the array of size n with all v's
* set a b c... Initializes the array with [a, b, c ...]
* rsq a b Range Sum Query for the range [a, b]
* rmq a b Range Min Query for the range [a, b]
* up a b v Update the [a,b] portion of the array with value v.
* exit
* <p>
* Example:
* init
* set 1 2 3 4 5 6
* rsq 1 3
* Sum from 1 to 3 = 6
* rmq 1 3
* Min from 1 to 3 = 1
* input up 1 3
* [3,2,3,4,5,6]
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
SegmentTree st = null;
String cmd = "cmp";
while (true) {
String[] line = StdIn.readLine().split(" ");
if (line[0].equals("exit")) break;
int arg1 = 0, arg2 = 0, arg3 = 0;
if (line.length > 1) {
arg1 = Integer.parseInt(line[1]);
}
if (line.length > 2) {
arg2 = Integer.parseInt(line[2]);
}
if (line.length > 3) {
arg3 = Integer.parseInt(line[3]);
}
if ((!line[0].equals("set") && !line[0].equals("init")) && st == null) {
StdOut.println("Segment Tree not initialized");
continue;
}
int array[];
if (line[0].equals("set")) {
array = new int[line.length - 1];
for (int i = 0; i < line.length - 1; i++) {
array[i] = Integer.parseInt(line[i + 1]);
}
st = new SegmentTree(array);
}
else if (line[0].equals("init")) {
array = new int[arg1];
Arrays.fill(array, arg2);
st = new SegmentTree(array);
for (int i = 0; i < st.size(); i++) {
StdOut.print(st.rsq(i, i) + " ");
}
StdOut.println();
}
else if (line[0].equals("up")) {
st.update(arg1, arg2, arg3);
for (int i = 0; i < st.size(); i++) {
StdOut.print(st.rsq(i, i) + " ");
}
StdOut.println();
}
else if (line[0].equals("rsq")) {
StdOut.printf("Sum from %d to %d = %d%n", arg1, arg2, st.rsq(arg1, arg2));
}
else if (line[0].equals("rmq")) {
StdOut.printf("Min from %d to %d = %d%n", arg1, arg2, st.rMinQ(arg1, arg2));
}
else {
StdOut.println("Invalid command");
}
}
}
}