-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbayesian-mixed-model.Rmd
182 lines (125 loc) · 4.56 KB
/
bayesian-mixed-model.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Bayesian Mixed Model
Explore the classic `sleepstudy` example of <span class="pack" style = "">lme4</span>. Part of this code was based on that seen on this old [Stan thread](https://groups.google.com/d/msg/stan-users/pdfignYQcas/BL0LPbGA2eMJ), but you can look at the underlying code for <span class="pack" style = "">rstanarm</span> or <span class="pack" style = "">brms</span> for a fully optimized approach compared to this conceptual one.
## Data Setup
The data comes from the <span class="pack" style = "">lme4</span> package. It deals with reaction time to some task vs. sleep deprivation over 10 days.
```{r bayesian-mixed-setup}
library(tidyverse)
library(lme4)
data(sleepstudy)
# ?sleepstudy
dat = list(
N = nrow(sleepstudy),
I = n_distinct(sleepstudy$Subject),
Subject = as.numeric(sleepstudy$Subject),
Days = sleepstudy$Days,
RT = sleepstudy$Reaction
)
```
## Model Code
Create the Stan model code.
```{stan stan-mixed-code, output.var='bayes_mixed'}
data { // data setup
int<lower = 1> N; // sample size
int<lower = 1> I; // number of subjects
vector<lower = 0>[N] RT; // Response: reaction time
vector<lower = 0>[N] Days; // Days in study
int<lower = 1, upper = I> Subject[N]; // Subject
}
transformed data {
real IntBase;
real RTsd;
IntBase = mean(RT); // Intercept starting point
RTsd = sd(RT);
}
parameters {
real Intercept01; // fixed effects
real beta01;
vector<lower = 0>[2] sigma_u; // sd for ints and slopes
real<lower = 0> sigma_y; // residual sd
vector[2] gamma[I]; // individual effects
cholesky_factor_corr[2] Omega_chol; // correlation matrix for random intercepts and slopes (chol decomp)
}
transformed parameters {
vector[I] gammaIntercept; // individual effects (named)
vector[I] gammaDays;
real Intercept;
real beta;
Intercept = IntBase + Intercept01 * RTsd;
beta = beta01 * 10;
for (i in 1:I){
gammaIntercept[i] = gamma[i, 1];
gammaDays[i] = gamma[i, 2];
}
}
model {
matrix[2,2] D;
matrix[2,2] DC;
vector[N] mu; // Linear predictor
vector[2] gamma_mu; // vector of Intercept and beta
D = diag_matrix(sigma_u);
gamma_mu[1] = Intercept;
gamma_mu[2] = beta;
// priors
Intercept01 ~ normal(0, 1); // example of weakly informative priors;
beta01 ~ normal(0, 1); // remove to essentially duplicate lme4 via improper prior
Omega_chol ~ lkj_corr_cholesky(2.0);
sigma_u ~ cauchy(0, 2.5); // prior for RE scale
sigma_y ~ cauchy(0, 2.5); // prior for residual scale
DC = D * Omega_chol;
for (i in 1:I) // loop for Subject random effects
gamma[i] ~ multi_normal_cholesky(gamma_mu, DC);
// likelihood
for (n in 1:N)
mu[n] = gammaIntercept[Subject[n]] + gammaDays[Subject[n]] * Days[n];
RT ~ normal(mu, sigma_y);
}
generated quantities {
matrix[2, 2] Omega; // correlation of RE
vector[N] y_hat;
Omega = tcrossprod(Omega_chol);
for (n in 1:N)
y_hat[n] = gammaIntercept[Subject[n]] + gammaDays[Subject[n]] * Days[n];
}
```
## Estimation
Run the model and examine results. The following assumes a character string or file (`bayes_mixed`) of the previous model code.
```{r bayesian-mixed-est, results='hide'}
library(rstan)
fit = sampling(
bayes_mixed,
data = dat,
thin = 4,
verbose = FALSE
)
```
## Comparison
Compare to <span class="pack" style = "">lme4</span> result.
```{r bayesian-mixed-compare}
print(
fit,
digits_summary = 3,
pars = c('Intercept', 'beta', 'sigma_y', 'sigma_u', 'Omega[1,2]'),
probs = c(.025, .5, .975)
)
mod_lme = lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
mod_lme
cbind(
coef(mod_lme)$Subject,
matrix(get_posterior_mean(fit, par = c('gammaIntercept', 'gammaDays'))[, 'mean-all chains'],
ncol = 2)
)
```
## Visualize
Visualize the posterior predictive distribution.
```{r bayes-mixed-pp}
# shinystan::launch_shinystan(fit) # diagnostic plots
library(bayesplot)
pp_check(
dat$RT,
rstan::extract(fit, par = 'y_hat')$y_hat[1:10, ],
fun = 'dens_overlay'
)
```
## Source
Original code available at:
https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/Bayesian/rstan_MixedModelSleepstudy_withREcorrelation.R