-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
115 lines (109 loc) · 3.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import os
import random
import numpy as np
import torch
from torch import cuda
from torch.backends import cudnn
import losses
import metrics
import models
import scalers
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--source-domains", type=str, required=True, nargs="+", help="Source domains"
)
parser.add_argument(
"--target-domain", type=str, required=True, help="Target domain"
)
parser.add_argument(
"--forecast-horizon", type=int, default=10, help="Forecast horizon"
)
parser.add_argument(
"--lookback-multiple", type=float, default=5, help="Lookback multiple"
)
parser.add_argument(
"--model",
type=str,
default="NHiTS",
choices=models.__all__,
help="Model architecture",
)
parser.add_argument(
"--loss",
type=str,
default="SMAPE",
choices=losses.__all__,
help="Forecasting loss function",
)
parser.add_argument(
"--regularizer",
type=str,
default="Sinkhorn",
choices=[
"None",
"Sinkhorn",
"EnergyMMD",
"GaussianMMD",
"LaplacianMMD",
],
help="Regularizer measure (None for vanilla model)",
)
parser.add_argument(
"--temperature", type=float, default=0.3, help="Regularizing temperature"
)
parser.add_argument(
"--scaler",
type=str,
default="softmax",
choices=scalers.__all__,
help="Normalizing function",
)
parser.add_argument(
"--metric",
type=str,
default="SMAPE",
choices=metrics.__all__,
help="Evaluation metric for validation and test",
)
parser.add_argument(
"--learning-rate", type=float, default=2e-5, help="Learning rate"
)
parser.add_argument(
"--num-lr-cycles", type=int, default=50, help="Number of learning rate cycles"
)
parser.add_argument("--batch-size", type=int, default=2**12, help="Batch size")
parser.add_argument(
"--num-iters", type=int, default=1_000, help="Number of iterations"
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
type=str,
default="float32",
choices=["float16", "float32", "float64"],
help="Data type used for torch and numpy",
)
parser.add_argument(
"--data-size",
type=int,
default=75_000,
help="Fixed data size for each domain (None to use all data)",
)
args = parser.parse_args()
if args.regularizer == "None":
args.temperature = 0
args.scaler = None
args.lookback_horizon = int(args.forecast_horizon * args.lookback_multiple)
args.pred_learning_rate = args.learning_rate
args.align_learning_rate = args.learning_rate * args.temperature
return args
def seed_everything(seed: int):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cuda.manual_seed_all(seed)
cudnn.benchmark = True
cudnn.deterministic = True