-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
156 lines (134 loc) · 5.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import logging as lg
import warnings
from itertools import combinations
import torch
import wandb
from geomloss import SamplesLoss
from torch import cuda, nn, optim
from tqdm import trange
import losses
import metrics
import models
import scalers
from data import get_dataloaders
from utils import parse_args, seed_everything
warnings.filterwarnings("ignore")
def train(args):
logger = lg.getLogger()
formatter = lg.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler = lg.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
wandb.init(config=args)
logger.info(f"Start training with args: {vars(args)}")
device = "cuda" if cuda.is_available() else "cpu"
seed_everything(args.seed)
torch.set_default_dtype(getattr(torch, args.dtype))
num_source_domains = len(args.source_domains)
logger.info("Loading data")
trainloaders, validloaders, testloader = get_dataloaders(
source_domains=args.source_domains,
target_domain=args.target_domain,
forecast_horizon=args.forecast_horizon,
lookback_horizon=args.lookback_horizon,
batch_size=args.batch_size,
dtype=args.dtype,
fixed_data_size=args.data_size,
)
trainloader = zip(*trainloaders)
logger.info("Configuring model and training")
model = getattr(models, args.model)(
args.forecast_horizon, args.lookback_horizon
).to(device)
blocks = model.blocks
if cuda.device_count() > 1:
model = nn.DataParallel(model)
blocks = model.module.blocks
pred_loss_fn = getattr(losses, args.loss)()
pred_optimizer = optim.Adam(model.parameters(), lr=args.pred_learning_rate)
pred_scheduler = optim.lr_scheduler.CyclicLR(
pred_optimizer,
base_lr=args.pred_learning_rate / 100,
max_lr=args.pred_learning_rate,
step_size_up=args.num_iters // (args.num_lr_cycles * 2),
mode="triangular2",
cycle_momentum=False,
)
if do_regularization := (args.regularizer and args.temperature > 0):
scale_fn = getattr(scalers, args.scaler)
align_loss_fn = SamplesLoss(loss=args.regularizer.replace("MMD", "").lower())
align_optimizer = optim.Adam(
sum([list(block.extraction_layer.parameters()) for block in blocks], []),
lr=args.align_learning_rate,
)
align_scheduler = optim.lr_scheduler.CyclicLR(
align_optimizer,
base_lr=args.align_learning_rate / 100,
max_lr=args.align_learning_rate,
step_size_up=args.num_iters // (args.num_lr_cycles * 2),
mode="triangular2",
cycle_momentum=False,
)
metric_fn = getattr(metrics, args.metric.lower())
logger.info("Start training")
for iter in trange(args.num_iters):
model.train()
trainbatches = next(trainloader)
hists = torch.cat([hist.to(device) for hist, _ in trainbatches], dim=0)
futrs = torch.cat([futr.to(device) for _, futr in trainbatches], dim=0)
preds, feats = model(hists)
pred_loss = pred_loss_fn(futrs, preds)
if do_regularization:
align_loss = torch.tensor(0.0, device=device, requires_grad=True)
for feat in feats:
stack_align_loss = torch.tensor(0.0, device=device, requires_grad=True)
feat_by_domain = [
feat[
domain_idx
* args.batch_size : (domain_idx + 1)
* args.batch_size
]
for domain_idx in range(num_source_domains)
]
for feat1, feat2 in combinations(feat_by_domain, 2):
stack_align_loss = torch.max(
stack_align_loss,
align_loss_fn(scale_fn(feat1), scale_fn(feat2)),
)
align_loss = align_loss + stack_align_loss
align_optimizer.zero_grad()
align_loss.backward(retain_graph=True)
align_optimizer.step()
align_scheduler.step()
wandb.log({"iter": iter, f"train_{args.regularizer}": align_loss.item()})
pred_optimizer.zero_grad()
pred_loss.backward()
pred_optimizer.step()
pred_scheduler.step()
wandb.log({"iter": iter, f"train_{args.loss}": pred_loss.item()})
if iter % 10 == 0:
model.eval()
with torch.no_grad():
for validloader in validloaders:
for hist, futr in validloader:
hist = hist.to(device)
futr = futr.numpy()
pred = model(hist).detach().cpu().numpy()
metric = metric_fn(futr, pred)
wandb.log({"iter": iter, f"valid_{args.metric}": metric})
if iter % 100 == 0:
model.eval()
with torch.no_grad():
for hist, futr in testloader:
hist = hist.to(device)
futr = futr.numpy()
pred = model(hist).detach().cpu().numpy()
metric = metric_fn(futr, pred)
wandb.log({"iter": iter, f"test_{args.metric}": metric})
logger.info("Finish training")
wandb.finish()
def main():
args = parse_args()
train(args)
if __name__ == "__main__":
main()