Skip to content

how to get best model and the history and how to retrain #1020

@badfish2019

Description

@badfish2019

best_model = tuner.get_best_models(num_models=1)
best_hp = tuner.get_best_hyperparameters()[0]

hypermodel = MyHyperModel()

model = hypermodel.build(best_hp)

hypermodel.fit(
best_hp, model,
training_data=(X_train, y_train),
validation_data=(X_val, y_val), epochs=200,
)


when I use the best_hp to train a model,the performance of the model is difference compare to the best_model .
why?
this is best_model

Train: {'MSE': '0.0224', 'MAE': '0.1155', 'RMSE': '0.1498', 'MAPE': '4.0837', 'R2': '0.9974', 'Corr.': '0.9992'}
Val: {'MSE': '0.0030', 'MAE': '0.0406', 'RMSE': '0.0552', 'MAPE': '4.1977', 'R2': '0.8491', 'Corr.': '0.9227'}
Test: {'MSE': '0.8920', 'MAE': '0.5601', 'RMSE': '0.9444', 'MAPE': '211.2147', 'R2': '0.9391', 'Corr.': '0.9744'}

this is best_hp (retrain model)

Train: {'MSE': '0.0179', 'MAE': '0.1021', 'RMSE': '0.1338', 'MAPE': '3.0199', 'R2': '0.9979', 'Corr.': '0.9995'}
Val: {'MSE': '0.0154', 'MAE': '0.1044', 'RMSE': '0.1242', 'MAPE': '11.0382', 'R2': '0.2350', 'Corr.': '0.8447'}
Test: {'MSE': '1.4758', 'MAE': '0.7471', 'RMSE': '1.2148', 'MAPE': '261.5144', 'R2': '0.8992', 'Corr.': '0.9585'}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions