To see how Argo works, you can run examples of simple workflows and workflows that use artifacts. For the latter, you'll set up an artifact repository for storing the artifacts that are passed in the workflows. Here are the requirements and steps to run the workflows.
- Installed Kubernetes 1.8 or later
- Installed the kubectl command-line tool
- Have a kubeconfig file (default location is
~/.kube/config
).
On Mac:
$ brew install argoproj/tap/argo
On Linux:
$ curl -sSL -o /usr/local/bin/argo https://github.com/argoproj/argo/releases/download/v2.0.0-beta1/argo-linux-amd64
$ chmod +x /usr/local/bin/argo
$ argo install
NOTE:
- On GKE with RBAC enabled, you may need to grant your account the ability to create new cluster roles
$ kubectl create clusterrolebinding YOURNAME-cluster-admin-binding --clusterrole=cluster-admin [email protected]
- The subsequent instructions below assume the installation of argo into the
kube-system
namespace (the default behavior). A different namespace can be chosen using theargo install --install-namespace <name>
flag, in which case you should substitutekube-system
with your chosen namespace in the examples below.
For clusters with RBAC enabled, the 'default' service account is too limited to do any kind of meaningful work. Run the following command to grant admin privileges to the 'default' service account in the namespace 'default':
$ kubectl create rolebinding default-admin --clusterrole=admin --serviceaccount=default:default
NOTE: You can also submit workflows using a different service account using the argo submit --serviceaccount <name>
flag.
$ argo submit https://raw.githubusercontent.com/argoproj/argo/master/examples/hello-world.yaml
$ argo submit https://raw.githubusercontent.com/argoproj/argo/master/examples/coinflip.yaml
$ argo submit https://raw.githubusercontent.com/argoproj/argo/master/examples/loops-maps.yaml
$ argo list
$ argo get xxx-workflow-name-xxx
$ argo logs xxx-pod-name-xxx #from get command above
You can also run workflows directly with kubectl. However, the Argo CLI offers extra features that kubectl does not, such as YAML validation, workflow visualization, and overall less typing.
$ kubectl create -f https://raw.githubusercontent.com/argoproj/argo/master/examples/hello-world.yaml
$ kubectl get wf
$ kubectl get wf hello-world-xxx
$ kubectl get po --selector=workflows.argoproj.io/workflow=hello-world-xxx --show-all
$ kubectl logs hello-world-yyy -c main
Additional examples are availabe here.
Argo supports S3 (AWS, GCS, Minio) as well as Artifactory as artifact repositories. This tutorial uses Minio for the sake of portability. Instructions on how to configure other artifact repositories are here.
$ brew install kubernetes-helm # mac
$ helm init
$ helm install stable/minio --name argo-artifacts
Login to the Minio UI using a web browser (port 9000) after obtaining the external IP using kubectl
.
$ kubectl get service argo-artifacts-minio-svc
On Minikube:
$ minikube service --url argo-artifacts-minio-svc
NOTE: When minio is installed via Helm, it uses the following hard-wired default credentials, which you will use to login to the UI:
- AccessKey: AKIAIOSFODNN7EXAMPLE
- SecretKey: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Create a bucket named my-bucket
from the Minio UI.
Edit the workflow-controller config map to reference the service name (argo-artifacts-minio-svc) and secret (argo-artifacts-minio-user) created by the helm install:
$ kubectl edit configmap workflow-controller-configmap -n kube-system
...
executorImage: argoproj/argoexec:v2.0.0-beta1
artifactRepository:
s3:
bucket: my-bucket
endpoint: argo-artifacts-minio-svc.default:9000
insecure: true
# accessKeySecret and secretKeySecret are secret selectors.
# It references the k8s secret named 'argo-artifacts-minio-user'
# which was created during the minio helm install. The keys,
# 'accesskey' and 'secretkey', inside that secret are where the
# actual minio credentials are stored.
accessKeySecret:
name: argo-artifacts-minio-user
key: accesskey
secretKeySecret:
name: argo-artifacts-minio-user
key: secretkey
The Minio secret is retrived from the namespace you use to run workflows. If Minio is installed in a different namespace then you will need to create a copy of its secret in the namespace you use for workflows.
$ argo submit https://raw.githubusercontent.com/argoproj/argo/master/examples/artifact-passing.yaml
By default, the Argo UI service is not exposed with an external IP. To access the UI, use one of the following methods:
Run:
$ kubectl port-forward $(kubectl get pods -n kube-system -l app=argo-ui -o jsonpath='{.items[0].metadata.name}') -n kube-system 8001:8001
Then visit: http://127.0.0.1:8001/
Run:
$ kubectl proxy
Then visit: http://127.0.0.1:8001/api/v1/proxy/namespaces/kube-system/services/argo-ui/
NOTE: artifact download and webconsole is not supported using this method
Update the argo-ui service to be of type LoadBalancer
.
$ kubectl patch svc argo-ui -n kube-system -p '{"spec": {"type": "LoadBalancer"}}'
Then wait for the external IP to be made available:
$ kubectl get svc argo-ui -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
argo-ui LoadBalancer 10.19.255.205 35.197.49.167 80:30999/TCP 1m
NOTE: On Minikube, you won't get an external IP after updating the service -- it will always show pending
. Run the following command to determine the Argo UI URL:
$ minikube service -n kube-system --url argo-ui