@@ -8,6 +8,32 @@ Available diagnostics are:
8
8
- Radar reflectivity
9
9
- Effective radius
10
10
11
+ Calculating these diagnostics make use of the physical moment equation for the
12
+ generalized gamma distribution, as a function of particle mass. We denote the moment
13
+ as `` M_x^n `` to emphasize that it is the moment with respect to the particle size
14
+ distribution written as a function of particle mass `` x `` .
15
+ ``` math
16
+ \begin{equation}
17
+ M_x^n(;N, ν, μ, B)
18
+ = ∫_0^∞ x^n ⋅ f(x) dx
19
+ = N ⋅ B^{-\frac{n}{μ}} ⋅ \frac{Γ\left(\frac{ν+1+n}{μ}\right)}{Γ\left(\frac{ν+1}{μ}\right)}
20
+ \end{equation}
21
+ ```
22
+ where:
23
+ ``` math
24
+ \begin{equation}
25
+ f(x) = A ⋅ x^ν ⋅ \exp(-B ⋅ x^μ)
26
+ \end{equation}
27
+ ```
28
+ is the particle size distribution as a function of particle mass, and
29
+ ``` math
30
+ \begin{equation}
31
+ B = \left( \bar{x} \frac{Γ\left(\frac{ν+1}{μ}\right)}{Γ\left(\frac{ν+2}{μ}\right)} \right)^{-μ}
32
+ \end{equation}
33
+ ```
34
+ is the particle size distribution parameter, in which `` \bar{x} = L/N `` is the mean particle mass.
35
+ See the particle size distribution section in [ Microphysics 2M] ( @ref ) for more details.
36
+
11
37
## Radar reflectivity
12
38
13
39
The radar reflectivity factor `` Z `` is used to measure the power returned
@@ -49,27 +75,27 @@ where:
49
75
50
76
For the [ 2-moment scheme] ( https://clima.github.io/CloudMicrophysics.jl/dev/Microphysics2M/ )
51
77
we take into consideration the effect of both cloud and rain droplets.
52
- Integrating over the assumed cloud droplets Gamma distribution leads to
78
+ The radar reflectivity, as written above is proportional to the 2nd moment cloud number distribution in mass
53
79
``` math
54
80
\begin{equation}
55
- Z_c = A_c C^{\nu_c+1} \frac{ (B_c C^{\mu_c})^{-\frac{3+\nu_c}{\mu_c}} \, \Gamma \left(\frac{3+\nu_c}{\mu_c}\right)}{\mu_c},
81
+ Z_c = M_x^2 / C^2
56
82
\end{equation}
57
83
```
58
84
where:
59
- - `` \Gamma \,(x) = \int_{0}^{\infty} \! t^{x - 1} e^{-t} \mathrm{d}t `` is the gamma function,
60
- - `` C = \frac{4}{3} \pi \rho_w `` .
85
+ - `` C = \frac{4}{3} π ρ_w `` .
86
+ The additional factor of `` C^2 `` results in a radar reflectivity that equals the 6th moment in radius .
61
87
62
88
Similar for rain drop exponential distribution
63
89
``` math
64
90
\begin{equation}
65
- Z_r = A_r C^{\nu_r+1} \frac{ (B_r C^{\mu_r})^{-\frac{3+\nu_r}{\mu_r}} \, \Gamma \left(\frac{3+\nu_r}{\mu_r}\right)}{\mu_r},
91
+ Z_r = M_x^2 / C^2
66
92
\end{equation}
67
93
```
68
94
The final radar reflectivity factor is a sum of `` Z_c `` and `` Z_r `` .
69
95
70
96
## Effective radius
71
97
72
- The effective radius of hydrometeors (`` r_{eff} `` ) is defined as
98
+ The effective radius of hydrometeors (`` r_\text {eff} `` ) is defined as
73
99
the area weighted radius of the population of particles.
74
100
It can be computed as the ratio of the third to the second moment
75
101
of the size distribution.
@@ -80,19 +106,25 @@ We compute the total third and second moment as a sum of cloud condensate and
80
106
precipitation moments:
81
107
``` math
82
108
\begin{equation}
83
- r_{eff} = \frac{M_{3}^c + M_{3}^r}{M_{2}^c + M_{2}^r} = \frac{{\int_0^\infty r^{3} \, (n_c(r) + n_r(r)) \, dr}}{{\int_0^\infty r^{2} \, (n_c(r) + n_r(r)) \, dr}}.
109
+ r_{eff}
110
+ = \frac{M^3_{r,c} + M^3_{r,r}}{M^2_{r,c} + M^2_{r,r}}
111
+ = \frac{∫_0^∞ r^3 \, (n_c(r) + n_r(r)) \, dr}{∫_0^∞ r^2 \, (n_c(r) + n_r(r)) \, dr}.
84
112
\label{eq:reff}
85
113
\end{equation}
86
114
```
87
- After integrating we obtain
115
+ The 3rd moment in radius, `` M^3_r `` equals the 1st moment in mass, `` M^1_x `` ,
88
116
``` math
89
117
\begin{equation}
90
- M_{3}^c + M_{3}^r = A_c C^{\nu_c+1} \frac{ (B_c C^{\mu_c})^{-\frac{2+\nu_c}{\mu_c}} \, \Gamma \left(\frac{2+\nu_c}{\mu_c}\right)}{\mu_c} + A_r C^{\nu_r+1} \frac{ (B_r C^{\mu_r})^{-\frac{2+\nu_r}{\mu_r}} \, \Gamma \left(\frac{2+\nu_r}{\mu_r}\right)}{\mu_r}.
118
+ M^3_r = M^1_x / C
91
119
\end{equation}
92
120
```
121
+ where
122
+ - `` C = \frac{4}{3} π ρ_w `` relates radius to mass for a spherical particle, `` x = C r^3 `` .
123
+
124
+ Similarly, the 2nd moment in radius, `` M^2_r `` equals the "2/3rd" moment in mass, `` M^2_x `` ,
93
125
``` math
94
126
\begin{equation}
95
- M_{2}^c + M_{2}^r = A_c C^{\nu_c+1} \ frac{ (B_c C^{\mu_c})^{-\frac{5+3\nu_c}{3\mu_c}} \, \Gamma \left(\frac{5+3\nu_c}{3\mu_c}\right)}{\mu_c} + A_r C^{\nu_r+1} \ frac{ (B_r C^{\mu_r})^{-\frac{5+3\nu_r}{3\mu_r}} \, \Gamma \left(\frac{5+3\nu_r}{3\mu_r}\right)}{\mu_r}.
127
+ M_r^2 = M_x^\ frac{2}{3} / C^\ frac{2}{3}
96
128
\end{equation}
97
129
```
98
130
0 commit comments